Size of Epidemic Outbreaks
small, medium, or large?
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‘ Outline I

¢ Introduction: infection processes

¢ Deterministic versus stochastic description
¢ Size of outbreaks

¢ Duration of outbreaks

& Exact results



‘ SIR Infection Processes I

¢ Total population: N
¢ Susceptibles, Infected, Recovered

N=S+1+T

¢ Sub-populations change due to:

(1) infection

i nN—2"N e 11 S\

(il) recovery

(s,i,r)——>(s,i—1,r+1)

Two dimensionless parameters:
infection rate, population size




‘ The Canonical Problem I

¢ Initial state: one infected individual

(s,i,r)=(N-1,1,00 t=0

¢ Final state: no infected individuals

(s,i,r)=(N —-n,0,n) t=t, T

What is the size of the epidemic outbreak n?
What is the duration of the outbreak t;?




Transition probabilities

iInfection probability

P _ rinfect _ 0[5/ N

I as/ N +1

infect recover

recovery probability

1
I:)recover — as/N +1

(A =3

‘Efficient Monte Carlo simulation method ‘




‘ Deterministic Epidemics I

¢ Evolution of average population, infinite hierarchy

d a . di) a,.. .
sepe e

¢ “Hydrodynamics”: ignore correlations

Assume: (si)=(s)(i) Use: S=(s)/N, I=(i)/N
¢ SIR equations
d—Sz—OcSI d—lzaSI—I
dt dt

Predicts average behavior for infinite N
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‘ The Epidemic Threshold I

¢ The average outbreak size

r=(n)/N
¢ From ODE's r
r=1-S(o0)
Phase transition
0 a<1 (endemic) ¢

1-e* a>1 (pandemic)

Deterministic approach predicts r‘




‘ Behavior at the epidemic threshold I

Why worry about the epidemic threshold?

¢ Evolution (mutation) increases virus lifetime near the
epidemic threshold

¢ Human efforts (immunization) reduce infection rate

& Actual infection rates can be close to one



‘ Size of outbreak at threshold I

¢ Predictions of deterministic approach

r=1-exp[—a(r +1/N)]

F =
¢ Averag

(n)=-

N2 for a=1
e outbreak size

0@ a<1
N1/2 0[=1

N a>1

10°

Deterministic
@ Simulation

1. Epic

emics come In three sizes
2. Deterministic approach fails




‘ Stochastic Epidemics I

¢ “Kinetic theory”: probability that the system is in a microstate

dip(s )= [+ ~DP(s+1i -1 - siP(s.0)]

+[(i +DP(s,i+1) —iP(s,i)]

¢ As aPDE

o.P :%|:(as _ai)P+%(ai,i — 20 +as,s)ilp+‘”

¢ Averages follow

=Y 'sP(s,i)  (si)=> siP(s,i)

‘Exact, complete description ‘

Textbook: NTJ Bailey, Math. Theo. of Infec. Diseas, 1975.



‘ Stochastic epidemics, infinite population I

¢ Infection probability is fixed (s=N)

_asIN «
et asIN+1 a+1

¢ Infection process is a branching process

¢ G =Probability outbreak size is n, obeys recursion

1 T(n-1/2) 1_(1—05)2
" a+1T(n+ DL/ 2)




‘ Outbreak probabilities I

¢ Probability outbreak has finite size

a>1

1 a<l
G =
Zn: ! {al
¢ Distribution of outbreak size

G - {n?”z exp[-n/n,] a=#1

n—3/2 05=1

¢ Average outbreak size (endemic phase)

(n) = 1-a)™



‘ Size of outbreaks I

. Assume maximal outbreak size N.

ny=>"nG, ~ > n 2 N3

. Population depletes, infection rate reduces, epidemic dies out

. Outbreak is effectively endemic

(n)=@L-a)™"~N/N.

. Match two estimates: new scaling laws

N.~N*® and (n)~N*°

Distinct outbreak size at the threshold




‘ Behavior extends near threshold I

¢ Size of near threshold region (scaling window)
1-a) " ~N"® = 1-g~N?3

¢ Outbreak size

((1—05)_1 l-a>> N3

/n) =< N 1-a|<<N7'?

N a—1>>N713

\

¢ Universal behavior for different N (finite size scaling)

n)/NY® = F(1-a)N'?)

‘One master curve for all system sizes‘




‘ Attack rate versus system size I
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‘ Numerical simulations I

Average over 10° independent realizations!

10 S —
3
10 Theory 8 ® N=10 .
® Simulation o N=10’ [ ]
e N=10° &
10° 6
n s '
N 1/3 o
10’ N o
2 '..'.o
o |e° . ; . 0 eseepessessess®®
190° 10° 10° 10° -4 =3 -2 =1 0 1 2
N (1—a)N*?

Excellent agreement with theory‘




‘ SIS process: no depletion effect I

SIS model: R immediately becomes S

n)~ N*? N. = N

10"

0 SI::JSpe=1/2
10° |

10’

10°

6

10° 10' 10° 10° 10" 10> 10



‘ Distribution of duration times I

¢ Probability of having i infected individuals

= DR+ (DR, 2R

& Exact solution

-1 1+1
R =t"@1+t)
¢ Survival probability of infection

S(t)=>. P =@1+t)"

¢ Average number of infected individuals

(i)=1/S =1+t



‘ Duration of outbreaks I

¢ Number of recovered

dr/dt~ixt = r=~t?
¢ Maximal duration time

r~t2~N?22 — t ~NY8

¢ Average duration time
t, dS NL/3 1 1
-~ t(— dt) J, t AUl

Scaling laws

<t>zéln N and t.~NY°
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‘ Numerical confirmation I

e Simulation
Theory
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‘ Probability distributions I

¢ Distributions are self-similar
P(i,t) > t°®(i/t)
P(r,t)—-G, >t °¥(r/t?)
¢ Similarity/scaling functions
D (x) = exp(—x)
2
W(y) = ”ZZ:;O(k +1/2)Pexpl- 72(k +1/2)y]
¢ Asymptotic behaviors

Aytexp[-1/ <<1
w(y) ~ y pE yl 'y
exp[-z°y/4] y>>1

¢ Laplace transform of joint distribution

2
_dbex p[bn]{ f%} exp[—&~/b coth+/b]

1 py+io
274 %




‘ Master equation for finite systems I

¢ Alternative derivation of scaling laws
¢ Dimensional analysis
-2

ir~-N + r~i? = r~N?3

¢ Reduce equation to (for scaled Laplace transform)

F, =(8-a’)F, +aF,,



‘ Conclusion I

¢ Stochastic description needed near threshold

¢ New scaling laws for the size and duration of
outbreaks

¢ Outbreaks near threshold have distinct size
¢ Universal behavior near threshold
¢ Scaling theory useful

¢ Fluctuations significant even on a complete graph



‘ Outlook I

¢ Match behavior at threshold-pandemic interface
¢ “Triple-deck” boundary layer?

¢ Form of finite-size scaling functions

EB, P.L. Krapivsky, g-bio/0402001
Phys. Rev. E, April 2004.
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